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1. INTRODUCTION

The-goal of this study is to establish approximate equilibrium relationships that govern a
material’s plastic deformation. The approach is to first model, on the micro-scale, the process
that produces dislocations and plastic deformation and then bring the results to the macro-scale
using the averaging process of homogenization (Christensen, 1979; Mura, 1987; Nemat-Nassar,
1993). The results are anal);tical expressions for the material’s threshold flow stress and the
spatial periodicity of its dislocation microstructure. |

This study focuses on the fairly broad class of polycrystalline face-centered—cubic (FCC)
metals. The dominant micro-mechanism of plastic deformation in these materials is dislocation
slip. Experimental observations indicate that F CC materials develop a common mode of |
dislocation slip called cross-slip (Sestak, 1971). In these materials, cross-slip produces rcgﬁlarly
spaced regions of densely packed dislocations where the spacing is observed to depend on the
applied stress (Raj, 1996). This spacing in the material’s dislocation microstructure is taken to
be the characteristic length used in the homogenization process.

Homogeniiation formally relates the effects of the micro-scale heterogeneity in the
microstructure to the material properties observed on the macro-scale, Figure 1. Spcqiﬁcally, the
homogenization process incorporates the effects of localized elastic strain reljef due to
dislocation slip into the material’s strain energy density. This density and the energy density for
the extension of dislocations are folded into a virtual work formulation that produces the
threshold flow stress and active slip-plane spacing relationships.

- This study is based on the hypothesis that plastic deformation is a process that enablés a

loaded structural component to minimize its internal energy. Because the process of plastic
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deformation is non-conservative, virtual work is employed rather that the principle of minimuh
potential energy used in the analysis of conservative elastic deformation.

There are a han&ful of articles in the literature applying variational techniques to the
plastic deformation of solids (Gurtin,l963; Hodge, 1962; Kachanov, 1959; Pian, 1957, Pian,
1958; Sanders, 1958). However, none of these applications atterhpt to describe the ene:rgies~ of
dislocation extension and motion during plastic deformation. The principle of virtual work can
be applied here as long as the non-conservative aspects of the process are adequately |
characterized.

A simplistic view is taken that the energy lost moving a dislocation, to be characterized
through the introduction of a “friction stress,” is the only non-conservative aspect of slip-
generated plastic deformation. One might object to this approach because‘ it does not account for
the apparently non-conservative extension of dislocations during the process of plastic
deformation. On the contrary, the extension of dislocations is viewed as the reversible
(conservative) localization of strain energy in the distorted lattices surrounding fheir extended
cores.

Treating dislocation extension as a reversible process is one of the cornerstones of this
energy-based approach to plastic deformation. It is accepted that work done by the macro-scale

external forces introduces elastic strain energy into the material. On the micro-scale, this strain
ehergy partially manifests itself as shear stresses that perform work on internal slip-planes
producing dislocation motion and extension. A fraction of the work done on the slip-planes is

lost through the friction stress of dislocation motion, but the remaining fraction of this work




extends the length of dislocations. These processes are related quantitatively in the virtual work
formulation.:

The ability to employ energy methods that link deformation induced microstructure to
parameters governing plastic deformation depends on the ability to model the process by which

dislocation line length is extended to produce plastic deformation. This process is cross-slip.




2. THE PROCESS OF PLASTIC DEFORMATION
2.1. Observed Cross-Slip

In this study, plastic deformation produced in an initially elastically distorted material is
based on the notion that planes of atoms slide over one another through the motion of
dislocations through the crystal lattice. Dislocations have two components: edge and screw
dislocations. An edge dislocation is an extra half plane of atoms that terminates on and that is
perpendicular to the plane along which it moves called the slip-plane. A screw dislocation is a
hollow core surrounded by a helical pattern of atoms réminiScent of the thread on a screw.
Screw dislocations, unlike edge dislocations, are capable of changing slip-planes during their
motion. This process is called cross-slip.

Sestak and Seeger (Sestak, 1971) have pointed out that both FCC gnd BCC (body-
centered cubic) metals exhibit cross-slip as the primary mechanism of plastic deformation in
Stage III strain hardening. Stage I is the relatively uninhibited motion of dislocations called
dislocation glide. Stage II strain hardening is the progressive formation of barriers that inhibit
'ciislocation motion. Stage III is the cross-slipping of screw dislocations to get around these
barriers, thus enabling dislocation motion, Figure 2. In polycrystalline materi'als, Stage III strain
hardening and cross-slip start at plastic strain levels of at most a few percent. Hence, cross-slip
is the primary mode of large plastic deformations in polycrystalline cubic materials.

Mughrabi’s experimental observations (Mughrabi, 1987) are particularly valuable in
charactenzing the results of cross-slip. Mughrabi has observed the formation of the barriers
depicted in Figures 2 and 3 for FCC matgrials. Furthermore, Mughrabi has obs?rved that the

barriers are made up of edge dislocations deposited by screw dislocations moving along the
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channels, shown schematically in Figures 2 and 3. In addition Mughrabi has measured the shear
stress distribution that develops across dislocation pile-ups in the channels during plastic

defonnatl:on, see Figures 4 and 6.

‘ 2.2 Idealized Cross-Slip

The model is based on Sestak’s (Sestak, 1971) and Mughrabi’s (Mughrabi, 1987)
experimental observations. In particular, the model describes the motion of screw dislocations
down channels formed by barriers. As each screw dislocation moves, it generates and deposits a
dipole pair of edge dislocations on the surrounding barriers. When more screw dislocations
move down the channel, rnor;a edge dislocations are extended and form pile-ups on the barriérs.
Eventually, the screw dislocations encounter obstacles and they cross-slip onto another slip-
plane and circumvent these obstacles. The new extended édge components on the new slip-
plane are now free to move. These edge components stop when they reach a barrier on the new
'slip-plane and the formation of new mobile screw components begins. As more barriers are
formed, the screw dislocations are forced to move along progressively narrower channels.

As this process continues, a slip-plane segregates itself into three functionally distinct
types of regions: the channels, the pile-ups, and the tangles, shown in Figure 3 The channels
are the central gaps between the parallel pile-ups. The pile-ups are the edge dislocations pressed
up against the tangles. The tangles are formed around the original barriers and are made up of
edge dislocations forced to merge by the relatively high shear stress at the head of the pile-up

shown in Figure 4.
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The shear stress varies across these three regions. In the channels, the shear stress
decreases because the screw dislocations moving down the channels produce slip that relieves
the local elastic shear strain. Local equilibrium redistributes the load onto the barriers (tangles)
where there is no slip. The pile-ups are the transition regions frorh the low shear stress in the
channels to the high shear stress in the tangles. In fact, Mughrabi has measured the shear stress
variation across such a pile-up in copper (Mughrabi, 1987a).

As this pattern of channels, pile-ups and tangles continues to form, the dominant source
of slip and plastic deformation is tﬂe screw dislocaﬁons moving along the channels. The cross-

slip of the screw dislocations to circumvent any obstacles is the phenomenon that sustains this

process.




3. HOMOGENIZATION

3.1 The Scales

To describe quantitatively the results of cross-slip, two sets of coordinates for two

different scales are established: the macro-scale’s global coordinates, X, and the micro-scale’s

local coordinates, x,. The global coordinates are those traditionally used to perform structural

analyses at the component level.

At any point in the material defined by the global coordinates, X, the local coordinates
are defined by the local maximum shear stresses, 1,(Xg,)- ﬁe directions of the first two local
coordinates, &(X,)and &,(X,), are the directions of the maximum shear stress, 1,(X,). The
third local coordinate direction, &3(X), is defined as a cross product of the first two and points

in the direction of the intermediate valued principal normal stress. The domain for a local

coordinate system is bounded by the active slip-planes assumed to be spaced e(x,,) apart and
aligned with the directions of t,(X,), as shown in Figure 5.
The active slip-plane spacing, ¢(X, ), is experimentally observed to be inversely

dependent on the local average maximum shear stress t,(X ). For values of 1,(Xp,)/G equal

to 107 the slip-plane spacing is at most a few microns. (Raj, 1996a) Because this spacing is so

small, it is assumed that the principal stresses, o;, and the unit vectors, €;, change very little
between two adjacent parallel slip-planes. In other words, it is aésum_ed that the global gradients

of o; and é; times the slip-plane spacing ¢ (X ) is small compared to their respective values of

o; and one.

13




Ac; =aaxi-z(xm) << o; (1)
m
S

|ag;| = = YXp) << 1 2)
m

These assumptions enable the local coordinates, x,,, to be taken as Cartesian within any

cube having dimension Z(Xm), as shown ifl Figure 5. The four slip-planes, two parallel to

€, and €, respectively, are taken to be four faces of the cube. The remaining two faces are

assumed for convenience to have spacing Z(Xn) in the €; direction. The origin of the local
coordinate system is placed at the cube’s centef. All functions, that depend only on the global
coordinates, Xy »are assum;:d to have a constant value within any cube. .A primary reason for
constructing the local coordinates and the cube is to define the volume over which the

homogenization process is applied.

3.2 Volume Averaging

Homogenization is the formal process of volume averaging the effects of material
heterogeneity at the micro-scale into a macro-scale formulation. In particular, the process
averages the micro-scale effects of a composite material’s fibers to produce an equivalent
homogenous anisotropic material model on the macro-scale.

In this study, homogenization is used to incorporate the slip-induced micro-scale changes

in the shear strain component of the strain energy density, while preserving the traditional elastic

relationships between the average stresses on the macro-scale, G;;(Xy,), and the average strains

on the macro-scale, &;(Xy,).

14




These average stresses and strains are defined by volume averaging and are called the

equivalent homogenized stresses and strains.

G(Xm) = I cu(xm,xn)dv | 3)

FiKa) = ol X )V | @

* Here the volume V is the cube and the integration is performed using the local coordinates, x,, .

Furthermore, the elastic displacement fields within any cube are defined in terms of the

equivalent homogenized strains €;(X,) and a locally varying displacement field %(Xp,, x,)-
u(Xm» Xg) = E(Xm)- Xj + (X, Xp) (5)

Here the locally varying components of displacement, U;, are used to describe the local elastic

distortion of the cube due to slip on the four slip-planes on its faces.

The resulting expression for the cube’s strain fields is
%X Xa) = { )-%(X )+ & Xms Xa) (©)

Substituting this expression for the strains into equation 4, the definition of the equivalent

homogenized strains, produces the following constraints on the locally varying strains,

€;(Xm»Xa ), and the displacement fields, (X, xn).

1 . ou; | Oy
-\-/-‘j/sij (Xm,xn)dV- ; [ax ax,JdV 0o | )

Hence, the cube’s locally varying displacement fields must be constructed with these constraints

in mind.

15




With these constraints satisfied, the resulting expression for the strain energy density in

the cube is -

eij(Xm’ Xn) Equp qu(Xm, Xn )jv

Ei_i(Xm) Eijqp Eqp(xm) + AUe(th) (8)

Note that the strain energy density has two components. The first is the strain energy associated
with the cube’s equivalent homogenized strains. The second is the change in the cube’s strain
energy density resulting from the local distortion of the cube due to slip.

As a direct consequence of the constraints given in equation 7, this second component is

not a function of the equivalent homogenized strains, €;(Xy,). Hence the traditional energy

relationship relating stress to strain is preserved

= = Ejpp Eqp = 5 ©)

for the equivalent homogenized stresses and strains.

Recall that the orientation of the cube is based on the directions of the local average
maximum shear stresses, t a(Xm). Stated differently, the orientation of the cube at any point
X 1s based on the directions of the maximum equivalent homogenized shear stresses. Also
recall that the size of the cube is based on the spacing of the active slip-planes, Z(Xm) . This

spacing is experimentally observed to be stress dependent.
Consequently, the size and orientation of the cube are taken to be independent of the

“crystal lattice’s orientation and anisotropy at the point X, . For simplicity, the material is

16




assumed isotropic. Furthermore, all the distortions within the cube are taken to be linear and
elastic: linear by choice and elastic because in this model, the plastic deformation is confined to

the slip-planes on the boundaries of the cube.

17




4. THE CUBE’S STRAIN ENERGY DENSITY

The goal here is to construct the cube’s strain energy density in the form of equation 8.
The approach is to first construct approximate displacement functions in the form of equation 5.
(X Xa) = &(Xm) - Xj + %X, Xg) )
Here, the equivalent homogenized strains are assumed to be the known solutions of the macro-

scale elasticity problem, posed in terms of the global coordinates, X,,. The locally varying, slip-

generated displacement functions, T;(X,, X, ), need be constructed to complete the expression

for the cube’s displacements, u;(Xg, X, )-
Approximations of the slip-generated displacements are based on the spatial dependence
of the slip-generated shear stress and shear strain distributions across the pile-ups on the slip-

planes, Figures 4 and 5. This spatial depéndence is then used to construct shape functions that -
approximate the slip-generated elastic displacements in the cube, %;(Xp,, X, ), and that satisfy
the constraints in equation 7. The result is the displacement fields needed to construct the strain

energy density for the cube, equation 5.

4.1 The Shear Stress Distribution Across The Pile-Up

The development begins with Eshelby’s equation governing the equilibrium spacing of

edge dislocations in a pile-up on the slip-plane. (Eshelby, 1951)

S —2 ) =0 j=123 . (10)
i=i X1 j =Xy
1]
Gb
A — 11
27— ) (D
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Here G is the shear modulus, v is Poisson’s ratio, and b is the magnitude of the lattice’s Burgers

vector. Also X, ; is the micro-scale coordinate value of  x, for the location of the j* dislocation
(shown in Figure 6), A is the coefficient that describes the repulsive shear stress between two
identical, parallel edge dislocations on the same slip-plane, and 1, 1(x),;) is the shear stress

acting on the j® dislocation.

Note that this slip-plane is defined by a constant value of the local coordinate of
Xy = §X)/2. Because this coordinate value is constant, its presencé is dropped from the
notation for simblicity. In addition, the shear stress is taken to be independent of x;.

Th.is development is further simplified by assuming th;at dislocations are only repelled

through their nearest neighbors. This reduces equation 10 to

A + A + tZl(XLj) =0 ] = 2,3, I 1 |

Xpi—Xpjs1 Xy —Xp -1

+ Ty xl,l =0 J =1 (12)
X12 — X1 ( )

In equation 12, all terms in the summation in equation 10 are dropped except the j + 1 term and
- the j - 1 term which describe the interaction of the j dislocation with its nearest neighbors.
-This nearest neighbor model accommodates Eshelby’s observation that the local shear
stress distribution increases one increment, At , as one passes each dislocatiori moving toward
the head of the pile-up as portrayed in Figﬁre 6. (Eshelby, 1951a)
ta(xy)) = T+ (j-1) At j=123,..n o a3)

Here 1, is the shear stress in the center of the channel to the left of the dislocation at x 11> Shown

in Figure 6. The n® dislocation in the pile-up is adjacent to the tangle.

19




Noting the recursive nature of equation 12, take the equation, starting with j = 1, and
sequentially substitute it into the next higher indexed equation to replace the spacing terms. The

result is an expression for the spacing between the j* and j+1% dislocations

A j
— + X TXn)=0 (14)
X1j ~ X1j+1 m=1

The relationship indicates that this spacing is in fact affected by the stresses acting on all the j
dislocations pressing on the j+ l'i'. However this cumulative stress effect is transmitted to the
j+1® only through its nearest neighbor, the j* dislocation. Using equation 13 to substitute for
731(X} ) and performing the summation leads to
A =—[j-rc+MJ | (1s)
X1j = Xjy 1 2
Here, the first term describes the spacing between the j™ and the j + 1® dislocations in the pile-ﬁp
and the second term is the cumulative stress acting on all dislocations up to the j* that produce
this dislocation spzicing.
This discrete algebraic relationship is.approximated as a differential equation to derive a
continuous function representing the sbatial pattern of the dislocations and the resulting shear
stress and shear strain distributions on the slip-plane. To this end, first replace the index j with

the discrete valued function, n(xy ;). This function is the number of dislocations in the pile-up
between the center of the channel, x; =0, and the location of the j +1% dislocation, x = x, ;,1,
shown in Figuré 6. Next, replace n(x j,;) with its continuous representation, n(x, ), expressed
as a function of the local coordinate x,.

i = n(xp ) > n(x) | (16)
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Now, observe that the inverse dislocation spacing ( Xy,j -x Lj+ ,)‘1 may be Yiewed as the
approximate spatial gradient of n(x, ;,;) or equivalently the spatial derivative of n(x,),

(xl,j - xl,j,,_l)-l = - dnd():(ll) (17) :

when x, ;,; is replaced by the local continuous variable x;. ‘Substituting these changes into

equation 15 leads to the following non-linear differential equation for n(x;).

Y dnd(,:l) + (n(xl)tc + n(xl)(néxl) —1) A‘t) =0 (18)

Using partial fractions, equation 18 can be rewritten as

dn(x;) _ dn(x;) _ (2B-Das
n(x))  n(x;)+2p-1 TR (19)

where 8 = t. /At. Integrating equation 19 yields

N(X,)(28-1) exp[a (xl _ @))J

n(Xm,xl) = - (20)
(2B-1) + N(Xp) [1 - exp[a (xl - };m))]]
where 2= CEZS | @
Here n(X,, X)) satisfies the boundary condition
" (Xm’«_};ﬁj = NXa) | @2)
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where N(X_,) is the total number of dislocations in the pile-up. The important result here is

equation 20, the spatial distribution of dislocations in the pile-up expressed as a function of the

local coordinate x;.

.This spatial distribution leads to the expression for the shear stress as it varies across the
pile-up. The continuous analogue of equation 13 expressed here
TZl(Xm’xl) =T+ n(Xm’xl) -At (23)

produces the expression for the shear stress on the slip-plane.

| N(X)(28-1) exp{a(xl - Z—(}—(m—))] At
01(XmoXy) = 1o + n(Xgox; ) At = 1 + P N(Xm)[l _ exp[a(XI _z.e(xm))D

2
(24) .
To complete this expression for the shear stress, two issues need to be resolved. The first is

whether or not B (the ratio of t_ to At ) is a function of the total number of dislocations in the
pile-up, N(X,). The second is to express 1, and Atinterms of t,(X,), the equivalent

homogenized shear stress on the slip-plane.
The first issue is addressed by observing that the shear stress expression, equation 24, has

1

a characteristic exponential length, a= . This characteristic length is used to estimate the

increment of slip-induced shear strain relief produced in the channel. Recall that as each screw
\

dislocation moves down a channel, Figure 3, the material above the dislocation’s path moves the

magnitude of one Burgers vector, b, relative to the material under the dislocation’s path.

Assume that half of this relative motion, b/2, contributes to strain relief above the slip-plane

22




and that the other half contributes to strain relief below the slip-plane. Hence, the increment of
shear strain relief is estimated to be half the slip distance b divided by the characteristic length,
-1

a

The shear strain drop in the channel due to the passage of a screw dislocation is

b 1
=2t | 25)

This increment of shear strain drop in the channel produces the increment of shear stress drop
across the newly formed edge dislocation deposited on the pile-up by the passing screw

dislocation, Figure 6. From equations 11 and 21, see that

Ac = %—Ea _ »(2[3-1) Aztn(l—v) (26)

and At divides out of this relationship leaving B as a constant.

1 1 '
= — 1. =B A1 27
R e =B @7)
The choice of a™ as the normalizing length for the increment of elastic strain relief is somewhat

arbitrary.

Using energy arguments, Eshelby determined that the shear stresses in a pile-up are

multiples of t.. (Honeycombe, 1984) Taking B, the ratio t /At to be one and subsequently

replacing At in equation 13 with 1. produces a quantitative expression of Eshelby’s conclusion.
(%) = e + (-1 j=123,...n (28)

Note that the expression for 8, equation 27, yields values very close to one.

W
(9% ]




The remaining issue is to determine the relationship between the shear stress in the
channel, 7., and the equivalent homogenized maximum shear stress, ‘Ca(Xm). To develop this

relationship, the definition of equivalent homogenized stress, equation 3, is used.
—_ 1 )
O'ij(Xm)Ev\{O'ij (X, x5) dV | 3)

Throughout this study, this relationship is enforced by insisting that the stress, acting on any
plane within the cube that is parallel to a face and integrated over the area of the plane, be équal
to the corresponding equivalent homogenized stress multiplied by the area of the plane. Stated
mathematically this condition is

G5(Xm)-A; = [a, 6;i(Xm- Xo) dA; (29)

Note that multiplying this relationship by the cube’s dimension, Z(Xm) , and dividing by the
cube’s volume produces equation 3, the definition of equivalent homogenized stress.
Applying equation 29 to the shear stress distribution on the slip-plane takes the form

(Xn)2 Xa)/2
(X)) O (Xm)= | [ t21(Xm, %)) dx;dx; (30)
—I(Xm)/Z -l(Xm)/Z

Substituting the expression for the shear stress, equation 24, into this equation and evaluating the

integrals results in

4 N(X -
T, (Xm) =1 + ) ln( 2(&_';')-!-1) (31)
subject to the condition that
T e(Xm) >> 23 ' ' (32)
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Representative values (Shankaranarayan, 1995) of these parameters are given in Table 1 and for

these values'equation 32 holds.

Solving for the shear stress in the channel, 1., in terms of the equivalent homogenized

maximum shear stress, t,(Xp,), produces

to(Xm) = T3 (Xm) - f(:(t ) 1n(1§;T) + 1] . e

and the shear stress jump at each dislocation in the pile-up is

AY(Xp) = ‘—(;‘—m) : | (34)

At this point, the expression for the approximate shear stress distribution on the slip-plane,

equation 24, is complete.

4.2 The Shape Function

Based on equation 24, the shear stress distribution on the slip-plane can be expressed as
101X, %) = 1e(Xm) + 0(Xq, ;) - At(X ) (35)
where n(X,,, x,)is defined in equation 20. Dividing this expression by 2G produces the shear

strain distribution on the slip-plane.

821(Xm’ xl) = tC(Xm) + rl(Xm’ xl) ) (36)

Note that the function n(X,, x;) describes the local (micro-scale) variation in the strain.
Consequently, n(Xm, xl) would be an excellent candidate function to approximate the

slip-induced elastic distortion in the cube, except for one major drawback. The square of this
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TABLE 1. REPRESENTATIVE VALUES OF THE PARAMETERS

G =42 GPa. NX,) =15
b=2.56 * 10-°m. /(X)) =10°m.
v =033 At =1, =30 MPa.

B=1
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function has no known closed-form expression for its integral. This integral is needed to sum

the strain energy over the cube. As a result, n(X,, x;) will be approximated by a simple

exponential function ¢(X, X;)- N(Xp,)-

: 2 ‘ :
O(Xm» x;) = €x B(—zl/—x_l-- J (37)

(Xm)

Here the parameter B is chosen to satisfy the homogenization constraint expressed in équa'tion
30.
The resulting approximation of the shear stress distribution on the slip-plane is
01X, X1) = 1e(Xn) + 0K X1) - N(X) - At(X ) (38)
Substituting this expression into equation 30 and choosing B such that equation 31 is satisfied

produces the following expression for B.

an [N(Xm) . 1]

Xz | 21

In effect, ¢(Xp,,%;)- N(Xy,) is an exponential function of x, that replaces n(Xpn,x;), a ratio of
exponential functions of x,, and that produces the same equivalent homogenized shear stress
when integrated over the slip-plane. A comparison of these two functions is shown in Figure 7,

for N(Xm) =15. The agreement between these functions steadily improves as N(Xm)

decreases in value to one.

27




NUMBERS OF DISLOCATIONS

FIGURE 7. A COMPARISON OF THE TWO SHAPE FUNCTIONS
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For simplicity of notation ¢(X,x,;) will be expressed as ¢(x, ).

o(x;) = ex{B (;’Z_(;/(_x__,z_)_ - IH | - (40)

The square of this function has a known expression for its integral and ¢(x,) will be used to

approximate the elastic distortion of the cube due to slip on its bounding slip-planes.

Before proceeding, it is important to note that ¢(x 1), evaluated at x; = 0, is much less

than one, or else 7,;(Xy,,0) will not be approximately equal to t.(Xy,) in the center of the
channel (equation 38). Using the representative values in Table 1, B has a value of 8 and
¢(0) = exp[-B] is very small compared to one.

4.3 The Assumed Elastic Displacement Fields

The following assumed displacement functions are constructed in the form prescribed by
equation 5 and in compliance with the homogenization requirements expressed in equations 3 &

4.

X
u(Xp,xp.%z) = Ell(Xm)xl +Epp(Xpm) X2 + % In [I;(—B_ET) + 1]¢(X1) fo?¢(n)dn

N(Xp)AY(X ) (s | X5 - IN(X,
+ (ZGzAB—(l) ) 0 (l-‘b(n))dn(l_(b(xl)) - 2G.€(4X7;)-ln[ 2([3—l)+1}

N(X |
02 (Xim X1 X3) = E2(Xm) X2 + E1(Xm) %y +%1n [_Z‘g_LI)HJ o' $(8)deo(x,)

el -t (1- 06 & - gyl Ske) ]

u3(Xm,X3) = E33(Xm ) X3 (41)
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The equivalent homogenized strains appear explicitly in the displacement functions. Recall that

the local coordinate directions were chosen such that 'E3I(Xm ),513(Xm), €3 (Xm) and E23(Xm)

are zero. The terms in u;(Xp,,X),X;) and uy(Xp,x;,X;) not containing the homogenized
strains are chosen such that the shéar stresses on the 1 and 2 faces of the cube match the shear
stress distribution, equation 38, on the slip-planes. In addition, these terms are chosen such that
the equivalent homogenized stre;s and strain relationships, equations 3 and 4, are satisfied

throughout the cube.

The method used to construct these displacement functions is based on the observation
that ¢(x) is an even function of x, and its integral and derivative are odd functions of x. The
displacements are constructed such that the slip-induced shear strains (shear stresses) are even
functions on their respective planes. When this is the case, the slip-induced extensional strains
(normal stresses) are odd functions on their respective planes. Hence, the slip-induced normal
stresses integrate to zero on their respective planes and the slip-induced shear stresses integrate
to zero when the channel shear stress, ‘tc(Xm), is adjusted using equation 33. When the slip-
induced stresses integrate to zero over their respective planes, the integrals of the total stresses

over their respective planes yield the equivalent homogenized stresses, equation 3.
4.4 Elastic Strain Energy Density

The cube’s strains are determined from the displacement fields, equation 41, and are then

substituted into equation 8
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auKnx) | ﬂ_JJ ©

1
&j(XmsXa) = '2-[ dx; %;

to determine the cube’s strain energy density.

1
U, =7 ‘[1 eij(Xm,xn)Eijqp sqp(Xm,xn)dV (42)

The resulting expression for the density is

L =y N (Xa)a(Xg) (1-v) (B -3B” +) .
U = 2 Eij(Xm) Eijqp eqp(xm) - 12G ) (l _ ZV) ’ B2 (B ~ 1)2 (43)
where
tnXm) &2(Xm) 0
Eij (Xm) = EZI(Xm) gn (Xm) 0 | ' (44)

0 0 €35(Xm)
As gxpected, the strain energy density has two components: the first expressed in terms
of the equivalent homogenized strains; and the second is the strain energy released by the cube
due to slip. the that the anticipated elastic relationship between the homogenized stresses and

strains, equation 9, follows directly from equation 43.

31




S. THE VIRTUAL WORK FORMULATION

The equilibrium relationships governing the slip-induced plastic deformation are
determined using the principle of virtual work. Here, the principle of virtual work is employed
such that at equilibrium, the virtual work, §W, equals the virtual increase in the materials
internal energy, §U.

dW =3U | (45)
Here W and U aré respe;:tively the work done and internal energy per unit mass of the material.
It is assumed that the elastic and thermal strains are sufficiently small to make the material’s
mass density essentially constant. Under these circumstances, energy per unit mass and energy
per unit volume differ only by a constant scaling factor of mass density. Hence, energy per unit
mass 1s replaced by energy per unit volume throughout this study.

The internal energy is taken to have three components.

U=Q+U, +Uy | (46)
Q is the specific internal energy based on the temperature of the cube. U, is the strain energy
density for the elastic distortion within the cube. Uy 1s the strain energy density for the lattice
distortions surrounding the dislocations in the pile-ups and tangles on the surface of the cube.

The specific work, W, is taken to have two components.

W=W, + W, | 47)
W, is the work per unit volume performed through virtual elastic displacements. W, is the
work per unit volume performed through virtual slip displacements.

Substituting equations 46 and 47 into equation 45 yields the variational relationship that

produces the equilibrium relationships.




SW, + 8W, = 5Q + 8U, + 8U e 48)
Here, it is assumed that at equilibrium, there is no heat flux across the surfaces of the cube.
Thus, 8Q arises only through dissipative work done on the surfaces of the cuﬁe.
To this point, only one of the five terms in equation 48 (the cube’s strain energy density,

U, ) has been constructed. Three of the four remaining terms will be constructed based on the

notion of an equilibrium configuration in the pile-ups.

5.1 The Equilibrium Configuration in the Pile-up

To facilitate the development of the remaining work and energy expressions, it is
valuable to first address the concept of an “equilibrium” configuration for the dislocation pile-
ups on the slip-planes. “Equilibrium” first occurs when the numbef of edge dislocations in the
pile-up, N(X,), becomes sufficiently large to force the edge disiocation in tﬁe pile-up nearest
the tangle to merge into the tangle. At the onset of equilibrium, the shear stress at the head of
the pile-up is just below the critical value needed to force the leading disloéation into the tangle.
As each new edge dislocation, generated in the channel and deposited in the pile-up, raises the
shear stress at the head of the pﬂe-up to this critical value, the leading dislocation merg;es into
the tangle. After this merging has taken place, the shear stress at the head of the pile-up drops
back just below the critical value. The result is that for every edge dislocation that moves into

the pile-up, there is another édge dislocation forced out of the pilé-up and into the tangle keeping

N(X,,) constant. When N(X,,) reaches this steady value, the pile-up is said to be in

“equilibrium.”
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As this process continues, the net number of dislocations in the pile-up, N(X,), remains

unchanged, while each edge dislocation in the pile-up moves, in sequence, closer to the head of
the pile-up and eventﬁally merges into the tangle. The number of edge dislocations forced to
merge into the tangles during equilibrium is labeled S(Xm).

Davidson has observed that edge dislocations imbed themselves in tangles when forced
within a distance of approximately four Burgers vectors, 4b (Davidson, 1997). Using equation

15 to determine the number of dislocations in a pile-up required to produce this spacing yields

-2 = (i) W) )

Replacing j with N(X, ) produces the expression for the spacing at the head of a pile-up.

+ N(Xm) (N(Xm) ~ 1) AT(Xm) A

N(Xm) te(Xp) -2 = (50) -
Recall that
Gb
As ——— ,
27:(1 - v) (an

Taking B to be one simplifies solving the quadratic expression, equation 50, for N(Xm).

L

w12 )72 »
N(Xp) = 3 (FAr(T,,)J (1)

Using the appropriate data given in Table 1, the resulting value of N(Xm) is 13.
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5.2 The Work Densities

There are two sources of virtual work performed on the cube: the work done through

elastic displacements, 3W, , and the work done through virtual slip displacements, 8W,. The

work done through virtual elastic displacements is that work done by the component’s surface
tractions elastically distorting the body. Applying the divergence theorem to the global elasticity
problem, it can be shown.th_at the work density of the surface tractions can be expressed in terms
of the equivalent homogenized strésses and strains. (Fung, 1965)
W, =G;(Xp) 88(Xa) | o o (52)

However, the surface tractions also perform work that permanently _change; the shape.of
the body through slip displacements on the internal slip-planes. Bccausé the cube’s shear stress
distribution and the pattern of slip on its slip-plane are known, the expression for the work |
density due to slip can be constructed directly on the micro-scale.

4 $2(Xm»x1)
2W, =VI [t21(Xm» x;) - b-ds(Xp, x;) dA, (53)

A, s,(X,,,,x,)'
- The integral term is equivalent to the work done on the four faces of the cube that are slip-
planes. Because the cube shares each of these four faces with one of four other cubes, the work
done on the four slip-planes is twice the work done on the cube. b-ds{(X, %) is the differential
of the relative slip motion through which the shear stress performs work.

If it is assumed that the pile-up is in an “equilibrium” state, as previously discussed, the
work integral over the slip-plane can be straightforwardly evaluated. During equilibrium, a -

screw dislocation moving down the channel deposits an edge dislocation on each pile-up and one




dislocation moves out of each pile-up and into a tangle. During this process, the screw
dislocation causes slip of one Burgers vector in the channel. In addition, each edge dislocation
in the pile-up advances one position toward the tangle as the closest edge dislocation merges into
the tangle. This produces slip of one Burgers vector throughout the pile-up. The result is that
there is a slip of one Burgers vector over channel and the two pile-ups. Hence, the differential

slip ds(Xy,, X, ) is independent of x; during equilibrium. Furthermore, the amount of slip that
occurs during equilibrium is the number of dislocations pushed from the head of the pile-up into
the tangle, §(Xp,).

With these observations, one can reduce the work density integral to

W, = ‘z—b%l [121(Xm. x1)dA (54)
v A .

Recall that any locally varying stress, like TZI(Xm, x,) , integrates over the area on which it acts

to the area times the equivalent homogenized stress, equation 30. Hence the expression for the

t

work density for slip becomes

_2bS(X ) T (Xm) € (Xm) _ 27(Xm) S(Xm )b

s 63(Xm - Z(Xm) (55)

Identifying (X, ) b/¢(X,) as the plastic shear strain, the variation of the work density due to

slip is seen to be

W, = 2ra(x,;,) a[s(x“‘)b] (56)
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5.3 The Internal Heat Density

The internal heat density of the cube is raised by the energy dissipated by the friction
stress, Ty, that resists the motion of a dislocation across the slip-plane. Using the arguments

presented in the previous section and the observation that the friction stress is uniform over the

slip-planes produces the following expression for the change in the cube’s internal heat density.

20Q=3 e -S(Xn) b, | 67
2

Upon evaluation, this integral reduces to

AQ - 2'cf S(Xm)b (58)

Again, identifying the plastic shear strain as §(X, )- b/¢(X,), the variation of Q is seen to be

8Q = 21 5( Sf();:.))b) - ' (59)

It should be pointed out that the uniform slip on the slip-plane is produced by screw
dislocations moving down the channel and edge dislocations advancing toward the head of the
pile-up. Edge and screw dislocations have slightly different friction stresses. The friction stress

used here, 1, should be viewed as an average friction stress.

5.4 The Dislocation Energy Density
All dislocations deposited in the pile-ups on the slip-plane occur in dipole pairs (opposite

types on the same plane). As a screw dislocation moves down the channel, the two deposited

edge dislocations (one onto each pile-up) are each of the opposite type. This deposited dipole
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pair forces the lead dislocation in each pile-up into their respective tangle. The two dislocations
forced into the tangles are also a dipole pair.

buring equilibrium, the increase in the dislocation energy on a slip-plane is the number
of dipole pairs forced into their tangles, S(Xm) , times the energy of each pair. The energy of
each pair has two parts: the strain energies of the pair plus the energy required to push each

dislocation up against its nearest neighbor.

20, S8 1 ) 2 1+ )]

The first term in the brackets is the energy per unit dislocation length for a dipole-pair separated

a distance, Z(Xm). (McClintock, 1966) The second term is the energy per unit dislocation

length required to push the dipole pair against their respective nearest neighbors a distance of 4b
away. Recall that 4b was the critical dislocation spacing at the head of the pile-up at .
equilibrium.

Note that as the distance separating the elements of the dipole pair, 4(Xp, ), tends to zero,
the energy of the dislocation dipole pair tends to zero as well. In other words, if the dipole pair
were to recombine in the absence of the friction stress, all its energy would be fully released.
Consequently, this expression for the strain energy around the dipole pairs indicates that the
energy is recoverable, hence conservative. |

The dislocation energy density can be accurately approximated by

__O0’SXn) | (LK) AXn)
e i) 2(x0) m( 16b° ] v ! ©
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5.5 The Results of Virtual Work

Having expressions for all the components of the virtual work formulation, the . .....
representative values of the parameters in Table 1 can be used to check the relative values of the 3
energy densities. This process reveals that the change in the cube’s elastic strain energy density
due to slip is roughly comparable to the dislocation energy density for plastic strains,

S(Xm)-b/é(X ), of one percent. For much larger plastic strains, the dislocation energy density |

is much larger than the slip—iﬁduced change in the cube’s strain energy density. The slip-induced
strains apparently remove strain energy from the interior of the cube and transfer the energy to
the regions near the four tangles. Hence, the slip-induced change in the cube’s strain energy
density is relatively small for pla;tic strains over five percent and it is dropped from
consideration.

Substituting equations 52, 56, 59, 61 and 43 (without the _t;:rm for the strain energy drop

due to slip) into equation 48 yields

§_(£m_)*_>) _

Eij(xm) 8Ei_i(th) + 2ta(xm) 5( Z(Xm) =

S(Xq)b) - - _ Gb?S(X ) (X
21¢ s(m} + Ejjep Eop(¥m) 88i5(Xm) + 5{1: 92X ln( 1(6b3 )B (62)

The plastic shear strain, ${X, )+ b/#(Xy,), contains two parameters that are free to vary: the

number of dislocations pushed from a pile-up into a tangle, S(X ), and the edge length of the

e o T g, e S L S
O R

cube, £(Xpm)-
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Letting these two parameters vary independently, along with the elastic strains €i(Xm).
produces the following results.
[65(Xa) - EijgpFop(Xam )] 885(Xm)

Gb ( €3(Xm)]:, b3S(X,)

_ vy e (%)

| ' Gb-2 (Xm) 3Gb S(Xm)b
+|- 2Ta(Xm) +2t¢ + 7= V)Xo ln[ 1663 ) - a(1- v)e(xm)J Zz(Xm) 8(Xpm)=0

+ (2ta(Xm) -2t~

(63)
Setting the coefficient of the variation of the elastic strains to zero yields the traditional linear

elastic constitutive law posed in terms of the equivalent homogenized stresses and strains.
Gij(Xm) = EijqpEqp(Xm) (64)
Setting the coefficient of the variation 8S(X,) to zero yields an expression for the threshold

flow stress of the material.

3
Ta(Xm) = % + 27(1 —(\}zl))e(xm) ln[ 81(6?)} = ulXa) ©)

Close examination of the energies (from which this expression follows) indicates that this is the
threshold value of t,(X,) for which sufficient work is performed on the slip-plane to extend
the edge dislocations through the motion of the screw dislocations down the channels. When
1,(Xpm) drops below this critical value, dislocation motion and extension stops and plastic
deformation due to cross-slip cea‘ses. Note that the expression for the threshold flow stress,

(X ). depends on the slip-plane spacing, £(X,).
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Setting the coefficient of 8£(Xm) in equation 63 to zero produces an expression for the

equilibrium spacing of the active slip-planes.

Gb A(X;)) 3 |
‘ta(Xm) =1 + i V)Z(Xm) [ln (—EbglJ - 5] (66)

Given the maximum equivalent homogenized shear stress, ‘Ea(Xm) , the only remaining

unknown in this equation is the slip-plane spacing.
In summary, the virtual work has produced both the elastic and plastic equilibrium
conditions for the material. The elastic equilibrium conditions are the traditional stress-strain .

relationships from which the maximum equivalent homogenized shear stress fqllows,

2(Xm) = T21(Xm)- Using t,(Xy)and equation 66, the equilibrium slip-plane spacing,
4Xy), is determined. ﬁsing 4(Xy) and equaﬁon 65, the threshold flow stress, (X)), is
determined. Using t,(Xy)and 4(X) in equations 33, 34 and Sl produces the values for the
equilibrium number of dislocations in a pile-up N(Xy,), the channel stress fc(Xm), and the
shear stress jump AT(Xm) . Introducing these results into equations 24 and 41 produces the

shear stress distribution on the slip-planes and the elastic displacement fields for the cube. -

Hence, the equilibrium problem for plastic response is solved.

Note that the plastic equilibrium conditions, equations 65 and 66, appear in the form of
stress-strain relationships when the dimensionless ratio, b/¢(Xy,), is interpreted as an increment
of plastic shear strain. Both equations relate an increment of plastic shear strain to a shear stress

using the shear modulus and Poisson’s ratio.
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6. RESULTS

The virtual work formulation has produced theoretical expressions for the equilibrium

spacing of the active slip-planes, £(X,), and the threshold flow stress, t4(X,,). The applied
stress ta(Xm)determines the equilibrium active slip-plane spacing. The actual slip-plane

spacing determines the threshold flow stress.

In this study, the slip-plane spacing, ¢(X,), is advanced as the parameter that governs

the formation of an FCC material’s heterogeneous subgrain microstructure. In particular, the
active slip-plane spacing is taken to be the diameter of subgrains that are observed to form
dunng plastic deformation in FCC materials. A subgrain is a region of relatively few

~ dislocations surrounded by a shell of highly concentrated dislocations. It is hypothesized that the
- cube (bounded by four slip-planes containing dislocation pile-ups and tangles) is a representative

model of the subgrain.

If this hypothesis holds, considerable data in the literature can be used to test the
theoretical expressions for the active slip-plane spacing and the threshold flow stress.
Specifically, Raj, et al, have collected data on subgrain diameter versus applied stress for many
materials including aluminum and copper. Based on this data, Raj has constructed an empirical
relationship between applied stress and subgrain diameter (Raj, 1996b). In addition, Varma
along with three of his students have measured flow stresses and the corresponding subgrain
diameters in three FCC metals: aluminum (Sil, 1993), copper (Shankaranarayan, 1995), and |
nickel (Rao, 1993).

These measured data will be used to test both theoretical relationships. First, Raj’s curve

fit for subgrain diameter versus applied stress will be compared to the theoretical expression for




¢ slip-plane spacing versus applied stress, equation 66. Second, subgrain diameter will be
in place of active slip-plane spacing in the theoretical expression for the threshold flow
s, equation 65. The resulting predicted threshold flow stresses will be compared with
na’s measured flow stresses.
Raj’s expression relating applied stress to subgrain diameter is posed in terms of a

ial tensile stress, o ; the subgrain diameter, d,; and an empirical parameter K chosen to

1ce the best curve-fit for the measured data. The relationship is

(g

2K =23 and m = 1.0. Converting the tensile stress to the shear stress on the active slip-

s, 13(Xm) = 0/2, produces

dg _ G ' :
o= 115(ta (Xm)) | (68)

ng this experimentally based empirical relationship, Figure 8, against the theoretical

nship, equation 66, demonstrates the excellent agreement. The friction stress, t; in

ion 66, in FCC metals is relatively.small compﬁred to the applied stress and is taken to be

n this comparison. The shear stress/shear modulus ratio varies from creep response loading
up to yield strengths (107%) and finally up to flow stress (10%). The excellent agreement
iere 1s advanced as strong evidence supporting the hypothesis that the active slip-plane

1g is the progenitor of the observed heterogeneous distribution of dislocations in the

1in microstructures of FCC materials.
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Using this hypothesis, one can predict a threshold flow stress when subgrain diameter is
used in place of active slip-plane spacing, equation 65 . A summary of the results are shéwn in
Figure 9 for aluminum, Figure 10 fo; copper, and Figure 11 for nickel. The values of the
material parameters used to predict the threshold flow stress are given in Table 2. Each
material’s reported Peierls stress (Honeycombe, 1984a) is used for its friction stress, T¢.

In Figures 9, 10 and 11, the measured flow stresses have beép adjusted Varma and his
students reported the measured flow stresses as nominal tensile stresses. The constant volume

assumption for large plastic deformation in thin tensile specimens of original length,L, , and
cross sectional area, Ay,

Vo = AgLg = A(Lo+AL) | L ®)
has been employed here to estimate true tensile stress from nominal tensile stress. This

relationship enables one to estimate the reduced cross sectional area, A,
ALY -1
A=Ao(l+ T =A0(1+ep) | (70)

based on Varma’s measured plastic tensile strain, €;. Subsequently, the true tensile flow stress

is estimated from the measured nominal flow stress, based on the level of plastic straiﬂ. |
6 =0y (1+ ap) ' . (1)
All of the flow stresses shown in Figures 9,10 and 11 are the estimated true stresses based on
Varma’s measured.nominal flow stresses and measured plastic strains. |
The theoretical tensile threshold flow stresses shown in Figures 9, 10 ahd 11 are 'twice

the theoretical shear threshold flow stresses predicted using equation 65. For the most part, the

theoretical thresholds are right where they should be. For copper and nickel the thresholds are
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TABLE 2. MATERIAL PARAMETERS

G— A% b Tf
Aluminum 25GPa 0.33 0.286nm 1.0 MPa
Copper 46 GPa 034 0.256nm 1.0 MPa
Nickel 76 GPa 031 0250mnm 5.0 MPa
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below the adjusted measured flow stresses. For aluminum, the theoretical threshold is higher
than it should be. Recall that the threshold stress is the stress below which all plastic
deformation due to dislocation slip ceases. For all three metals, the theoretical threshold stress
tracks the apparent trend of the increasing measured flow stress with the decreasing measured
subgrain diameter.

In addition, we have shown only those .ﬂow stresses measured at the slowest strain rate
reported by Varma, 0.01/minute. If Varma’s data had been méasured at a slower strain rate, one

would expect the measured flow stresses to be closer the threshold flow stress of the material.
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7. DISCUSSION

The-theoretical predictions for active slip-plane spacing and flow stress are consistent
with the experimental observations. This agreement between theory and experiment indicates
that the theory accurately approximates the dislocation slip and extension that produces plastic
deformation in FCC metals.

Consequently, it appears that many factbrs governing plastic deformation are
significantly less important than the friction stress and the exténsion of dislocations. For
instance, slip-plane misalignment with the maximum shear stress is not addressed. The
anisotropic stiffness of the crystal lattice is not addressed. The complicated attractive and
repulsive interactions of djsl-ocations is not addressed except in the pile-ups. The dissociaﬁon of
dislocations into partial dislocations in the low stress regions of the chanpels 1s not addressed.
The random nature of barrier formation is not addressed. The effects of grain boundaries on
stress fields are not addressed. Finally, subgrain formation is a multidimensional process, not
limited to the simple geometry described here.

In spite of all these potential deficiencies, the approximate theoretical relationships
developed here are apparently fepresentative of the process. Moreover, these relationships are
posed in terms of known or measurable fundamental parameters of the matet_ial. As such, these

approximate relationships are advanced as completely theoretical expressions, based on first

principles, for the equilibrium spacing of dislocation microstructure in a material and its

threshold flow stress.
- However, because of their approximate nature, these relationships must be employed

with care. The active slip-plane spacing relationship is valid only when the shear stress is large -
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enough to produce spacing less than the initial grain size. In addition, the flow stress
relationship is not applicable to plastic deformation governed by diffusion-driven vacancy
motion. Moreover, these theoreticgl relationships are applicable only when the friction stress
and dislocation extension are the dominant energies in the process of plastic deformation.

It 1s reassuring to note that this study’s threshold flow stress relationship is based on
dislocation extension. It is widely accepted that many materials exhibit a flow stress that
evolves proportionally to the square root of dislocation density.(Hertzberg, 1976) This
observation may be helpful in developing the rate equations governing the evolution of slip-
plane spacing, dislocation density and flow stress. Because the flow relationship developed here
is an equilibrium relationshiﬁ, it is inappropriate to advance any conclusions about 6bservedy
evolving dislocation densities that are in part driven by kinetics. |

However, these equilibrium relationships should be viewed as approximate expressions
for the combination of parameters that arrest plastic deformation. Said differently, these
relationships should be used to construct the zero rate conditions in the state equations governing
the kinetics of plastic deformation.

Because of the approximate nature of these equilibrium plasticity relationships, their
ultimate value may not lie in their precise prediction of active slip-plane spacing and flow stress.
Rather, the matﬁematical form of these relationships might be very valuable in constructing
empirical engineering approximations that are representative of the plastic response of rather
complicated alloys.

More specifically, it is possible that these equilibrium relationships may be applied to

particulate second phgse and solid solution FCC alloys. Generalizing the notion of the friction
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stress, to describe the total energy expended to move a dislocation through a lattice containing
impurities and/or small second phase particles, extends the applicability of these relationships to
some alloys. The flow stress data for nickel in the previous section was measured on Nickel
200, a mild alloy. "

In conclﬁ;éion, approximate relationships describing the equilibrium conditions for plastic
deformation through cross-slip in FCC metals have been developed. These results appear in the
form of stress-strain relationships, where the strain appears as increments of plastic shear strain.
Because the virtual work approach that produced these equilibrium plasﬁcity relationships also
reproduced the classical elastic equilibrium stress-strain relationships, these plasticity
relationships are viewed as fundamental relationships governing plastic deformation in FCC

materials.
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